2011 B II Angabe

BE	1.0	In einem kartesischen Koordinatensystem des ${\rm I\!R}^3$ sind die Punkte $P(1;0;0)$, $Q(0;1;0)$, $R(0;0;1)$ und $S_k(k;k;k)$ mit $k\in {\rm I\!R}\setminus \{0\}$ gegeben.
6	1.1	Berechnen Sie die Werte des Parameters k, für die die gegebenen Punkte eine dreiseitige Pyramide aufspannen.
6	1.2	Bestimmen Sie, für welche Werte des Parameters k die Pyramide ein reguläres Tetraeder, also eine gleichseitige Pyramide ist.
	2.0	Methan CH_4 ist eine Kohlenwasserstoffverbindung. Das Molekül hat die Form eines regulären Tetraeders, in dessen Ecken sich die H-Atome befinden. Das C-Atom liegt im Punkt C, gleich weit von allen H-Atomen entfernt. Der Punkt C teilt die Höhe des Tetraeders im Verhältnis 3:1. Die Ecken des Tetraeders, also die Lage der H-Atome, seien die Punkte aus 1.0 mit $k=1$, also $P(1;0;0)$, $Q(0;1;0)$, $R(0;0;1)$ und $S_1(1;1;1)$.
3	2.1	Die Punkte P, Q und S_1 liegen in einer Ebene F. Bestimmen Sie eine Gleichung dieser Ebene in Koordinatenform. [Mögliches Ergebnis: $F: x_1 + x_2 - x_3 - 1 = 0$]
3	2.2	Bestimmen Sie das Volumen des Tetraeders PQS ₁ R.
4	2.3	Der Punkt T ist der Fußpunkt des vom Punkt R auf die Ebene F gefällten Lotes. Berechnen Sie die Koordinaten des Punktes T. $\left[\text{Ergebnis}: T\left(\tfrac{2}{3}; \tfrac{2}{3}; \tfrac{1}{3}\right)\right]$
1	2.4	Danahnan Sia dia Kaandinatan das C. Atama

4 2.4 Berechnen Sie die Koordinaten des C-Atoms.

 $\left[\text{Ergebnis}: C\left(\frac{1}{2}; \frac{1}{2}; \frac{1}{2}\right)\right]$

4 2.5 Bestimmen Sie den Winkel ρ zwischen zwei C-H-Bindungen, also z.B. den Winkel PCS₁.

30