2005 B I Angabe

BE 1.0 Im kartesischen Koordinatensystem des \mathbb{R}^3 sind die Geradenschar g_k mit $k \in \mathbb{R}$ sowie die Gerade h gegeben:

$$g_k: \ \vec{x} = \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix} + \sigma \begin{pmatrix} k-4 \\ k \\ 3 \end{pmatrix}, \ \sigma \in {\rm I\!R} \ ; \qquad h: \ \vec{x} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} + \tau \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix}, \ \tau \in {\rm I\!R}.$$

- 9 1.1 Ermitteln Sie die gegenseitige Lage der Geraden g_k und h in Abhängigkeit von k.
- 4 1.2 Berechnen Sie den Schnittpunkt P der Geraden g_1 (für k = 1) und der Geraden h sowie deren Schnittwinkel.

[Teilergebnis: P(1; 1; -2)]

- 4 1.3 Bestimmen Sie den Punkt L der Geraden g₁, der dem Ursprung am nächsten liegt.
 - Zusätzlich ist nun für $a \in IR$ eine Ebenenschar E_a in Koordinatenform gegeben: $E_a: (4-a)\cdot x_1 + a\cdot x_2 4 = 0\,.$
- 3 2.1 Beschreiben und begründen Sie die besondere Lage <u>aller</u> Ebenen E_a im Koordinatensystem.
- 2 2.2 Zeigen Sie, dass der Punkt P aus Aufgabe 1.2 in allen Ebenen E_a liegt.
- 4 2.3 Bestimmen Sie den Wert für a, für den die zugehörige Ebene E_a senkrecht zu der Ebene steht, in der die Geraden g₁ und h liegen.
- 2.4 Zeigen Sie, dass sich alle Ebenen E_a in einer von a unabhängigen Geraden s schneiden und geben Sie eine Gleichung dieser Geraden s an.

30